
A Rational Approach to Minimal High-Resolution
Cross-Reactive Arrays

Eric Green,† Mark J. Olah,‡ Tatiana Abramova,† Lance R. Williams,‡

Darko Stefanovic,‡ Tilla Worgall,† and Milan N. Stojanovic*,†

Contribution from the DiVision of Clinical Pharmacology and Experimental Therapeutics,
Department of Medicine, and Department of Pathology, Columbia UniVersity, Box 84, 630 West
168th Street, New York, New York 10032, and Department of Computer Science, UniVersity of

New Mexico, Albuquerque, New Mexico 87131

Received June 16, 2006; E-mail: mns18@columbia.edu

Abstract: We report a rational approach to the construction of cross-reactive arrays for steroids consisting
of five to seven sensors incorporating modified oligonucleotides. The sensors for our arrays were selected
to maximize their differential responses to the two steroids most different in an arbitrarily chosen parameter
named “shape-length”. The arrays incorporated three previously unreported types of sensors identified
through a massive screening effort: (1) three-way junction sensors with neutralized charges within junction;
(2) “self-aggregating sensors”; and (3) sensors incorporating fluorophore directly in a three-way junction
as a spacer. The arrays were tested on seven steroids and an alkaloid (cocaine) over a range of
concentrations, and achieved 92-96% accuracy in class assignments, despite the close structural similarities
between steroids.

Introduction

Closely related compounds, differing in a single methyl group,
or a single stereocenter, can be readily distinguished by a
mammalian olfactory system.1 This is accomplished by an array
of about 1000 nonspecific receptors cross-interacting with
odorants, and generating patterns characteristic for each odorant.2

The concept of cross-reactive sensor arrays3 has been introduced
in the hope of reproducing the resolution and sensitivity of the
mammalian olfactory system, and has led to important develop-
ments, particularly in the analysis of gaseous analytes.3 In recent
years, several impressive examples of cross-reactive arrays of
molecular receptors have been reported that target solution-phase
analytes as well.4

In our previous report in this journal,5 we demonstrated that
the DNA three-way junction6 provides a scaffold for the
systematic generation of cross-reactive sensors capable of

signaling the presence of hydrophobic molecules. In that work,
we constructed a nine-sensor cross-reactive array by systemati-
cally varying the positions of fluorophores and the mismatch
content in junctions. However, our approach was purely
empirical, many sensors were redundant, and the array did not
have sufficient resolution to solve the challenge posed below.

In Figure 1, we show seven steroids representative of various
steroid classes, and we pose the following challenge: Given
the large number of sensors with known properties, can we
develop a rational procedure to find the minimum number of
sensors that would form a cross-reactive array capable of
generating a fingerprint for each of these steroids over a range
of concentrations? While strong arguments have been made for
large arrays,3 we were interested in a small array for several,
purely practical reasons. Such arrays would be more cost-
effective, they would be easier to train than larger arrays (while
avoiding Curse of Dimensionality7), they would be sufficient
for most common applications, and their results would be easier
to transfer to other laboratories.

The task to differentiate steroids in Figure 1 is particularly
difficult for artificial molecular-scale receptors with hydrophobic
interactions as their primary recognition motifs, because some
of these steroids have very similar hydrophobic properties and
shapes. Aside from the manifest engineering challenge, any array
capable of generating characteristic patterns for these steroids
over a wide range of concentrations would also have practical
applications in diagnostic tests. In metabolic errors of steroido-
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genesis, such as errors in bile acid metabolism8 and congenital
adrenal hyperplasia,9 the concentration of one of the families
of steroids increases 1 or 2 orders of magnitude over specimens
from healthy subjects. Furthermore, these families of steroids
always represent dominant components in mixtures, with high
micromolar concentrations. These families are well represented
in the screening process by a single steroid with a characteristic
set of functionalities (e.g.,1 in Figure 1 for bile acid metabolism
errors).

We now report an approach to the selection from a large
candidate collection of optimal sensors (Figure 2) to constitute
a cross-reactive array with sufficient resolution to differentiate
reliably all seven steroids at a range of concentrations. The
concentration ranges are limited by the solubility of steroids
on the high end, and the sensitivity of the sensors on the low
end. We know that some alkaloids, such as cocaine (8), cross-
react with some three-way junctions,5 and we included8 as a
control for an “unknown” nonsteroidal interference.

Results and Discussion

Collection of Sensors.Over the past several years, we have
assembled a collection of several hundred various fluorescent
sensors. They belong to five different types: (1) sensors based
on three-way junctions that have to be coupled postsynthesis
to fluorophores;5 (2) sensors based on three-way junctions with

fluorophores already incorporated10 (e.g., B-F in Figure 2);
(3) combinatorial self-assembling sensors;11 (4) single-chain
sensors with four or more hydrophobic base analogues (e.g.,
nitroindolNI in Figure 2, difluorotoluene, nitropyrolle) and their
rational modifications (e.g.,A in Figure 2); and (5) single-chain
sensors derived from the GGGAG(fluorescein-dT)TCAGTTT
(e.g.,G in Figure 2) sequence and their rational modifications.
Types (4) and (5) were serendipitously discovered during control
screening of individual chains of self-assembling sensors.

The detailed study of the mechanism of sensors under (4)
and (5) is beyond the scope of the current paper; suffice to say,
these sensors are based on dissociation of hydrophobic ag-
gregates. These aggregates are forA sufficiently large so that
they can be precipitated through centrifugation at high speeds,
while hydrophobic molecules inhibit precipitation. In the case
of G, the aggregates cannot be precipitated, and they are
apparently based on stacked G-quartet formation. The incor-
poration of type (3) sensors did not affect the classification of
our steroids; hence they will not be discussed further. In our
previous work, modified aptamer precursors for type (1) sensors
were transformed into sensors by means of the functionalization
of a phoshorothioate, substituting one of the phosphodiester
bonds (alternatively amines were used5). Because of the presence
of diastereomers in most type (1) sensors, and batch-to-batch
variations in response to steroids with these sensors, we decided
to focus in this work (in contrast to our previous paper) primarily
on the three-way junctions with fluorescein already incorporated
during oligonucleotide synthesis (type (2)). Our collection of
three-way junction sensors contained modifications in sequence,
backbone, position, and type of fluorophores, and various
spacers (some examples are in Figure 2).

While the steroids used in our studies represented an adequate
sample of the entire steroid space, and major variations in steroid
structures were covered, there was one notable exception:
cholesterol. Despite numerous attempts, we found no sensor
responsive to solubilized cholesterol derivatives. We attribute
this observation to the self-aggregating properties of cholesterol,
even at low concentrations, and the inability of three-way
junction sensors to interact with aggregates.

Selection of Sensors for an Array.Our goal is to select a
minimal set of sensors, which are able to generate a unique
signature for each steroid. We now demonstrate that an empirical
procedure for selection is possible, leading to a small set of
candidate sensors, which behave as an optimal cross-reactive
array. The procedure for selection is as follows: We have a set
of compounds that have to be distinguished (Figure 1). To
maximize the overall response of sensors, rather than selectivity,
let us first select a compound that strongly interacts with most
of the sensors (that is, an “anchor” compound). In our case,
that compound is deoxycorticosterone (2). Next, we choose a
potential analyte that is most different from2, in our case,
deoxycholic acid,1. Next, let us define a descriptor that allows
an ordering of the steroids with respect to the features
distinguishing the two selected compounds (Figure 3A). We
name this arbitrary descriptor shape-length, because1 and 2
are most different in the shape of the hydrophobic core (1 is
bent,2 is straight) and the length of the side chain (side chain
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Figure 1. Target steroids and cocaine.

Figure 2. Sensors used in the cross-reactive array construction (full
structures given in Materials and Methods).NI is nitroindol base,F is
fluorescein, either attached to T or as a spacer (inD), IA is spacer with an
internal amine, while mG is methyl phosphonate analogue.
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in 1 is much longer than that in2). Now, let us find a set of
sensors, which are each sensitive to a different region of the
shape-length scale. This is done by searching for sensors that
show maximal variation in interactions with these two repre-
sentative compounds.

Such a procedure leads to a selection of cross-reactive sensors
A-E (Figure 2). These sensors give excellent distribution in
selectivity along the shape-length parameter as defined by1
and 2, indicating the satisfactory richness of motifs in our
collection of sensors (at least when it comes to this descriptor).
SensorA is selective for1 over2 (Figure 3), while, in contrast,
sensorsC andD show various degrees of selectivity for2 over
1. SensorE was selected because it showed almost no response
to 1, yet it proved cross-reactive with other analytes. SensorB
is more responsive to1 than to2, but 1 has lesser efficacy (we
define efficacy, as in pharmacology, as the strength of coupling
between a recognition process and the downstream signal).
Interestingly, sensors such asB, with different efficacy toward
analytes, can be advantageous in cross-reactive arrays. For
example, sensors such asA andB, with very similar binding
selectivity for1 over 2, but different efficacy of one of them,
would not be considered redundant.

SensorB has a biphasic binding response to deoxycholic acid.
This is indicative of two molecules of cholic acid binding. The
binding of three-way junctions to more than one steroid has

not been reported, and we did not observe it with our other
steroid targets, indicating that this behavior is characteristic of
a particular sensor-analyte couple (cholic acids vsB).

SensorsG andF have responses similar to those of sensors
A and C, respectively.G was different fromA because it
showed slightly improved separation between2 and 6 (full
concentration-response curves for all sensors are available in
the Supporting Information), which we considered a critical pair
of analytes, due to their very similar structures.F was nearly
identical to C, and we added it to study the influence of
redundant sensors on an array. Thus, sensorsA-G formed a
somewhat redundant set of initial sensors, from which we
wanted to choose the final, optimal set after further measurement
and analysis.

All sensors used in this work show excellent reproducibility,
indicating that patterns reported in this paper should be easily
reproduced in other laboratories. SensorsA andG show greater
sensitivity to experimental conditions (e.g., salt, preheating,
incubation, type of test tubes used), which is probably the main
reason forG not performing optimally in an array (G has 3-fold
lower efficacy thanA, which makes the standard error more
significant). We note, however, that even an array with only
three-way junction sensors has an excellent accuracy in clas-
sification (see below).

Determination of Sensitivity. We decided that for an array
to be considered responsive to a certain steroid concentration,
at least one of the sensors must show a change in fluorescence
of 10% or more. On the basis of this criterion, we selected the
following ranges of concentrations for further study:1, 2-500
µM; 2, 8-500µM; 3, 32-500µM; 4, 50 and 100µM; 5, 32-
125 µM; 6, 5-150 µM; 7, 125-500 µM; 8, 32-500 µM. In
the case of4, 5, and6, the maximum concentration is less than
500µM because the solubility of the steroid is an issue at higher
concentrations. Tests used for presentation here were run in two
sets of triplicates, on two different days within 1 month.

Classification and Visualization Methods.We wanted to
show that the array is able to uniquely identify any given steroid,
at any concentration, within the bounds of sensitivity. Once an
unknown is classified, regression can be used reliably to estimate
concentration. Thus, for each of the eight analytes, we formed
a class consisting of all measurements for all concentrations of
the analyte, for which the array showed sensitivity. Each class
represents the range of possible signatures that an analyte is
expected to give. As long as these classes do not overlap much,
the array will have the potential to uniquely identify the analytes.

Because each of our classes consists of points from several
different concentration values, the classes do not exhibit any
well-known statistical distribution; thus, we chose to implement
a K-nearest-neighbors (KNN) classifier.12,13 This is a nonpara-
metric technique, which does not attempt to model the data as
a distribution. Instead, it chooses a classification for an unknown
value by taking a vote of the identities of theK-nearest neighbors
in theN-dimensional space (whereN is the number of sensors
in an array). The class chosen is the one with the most
representatives in the set of nearest neighbors. We empirically
settled onK ) 3 and broke ties according to the closest point.

To understand if the array is useful for identifying steroids,
we must obtain an estimate of its classification accuracy. We

(12) Scholkopf, B.; Smola, A. J.Learning with Kernels; 2002.
(13) Duda, R. O.; Hart, P. E.Pattern Classification; 2001.

Figure 3. Panel 1 shows the relationship of the shape-length of analytes
1, 2, and8. By examining the response of each of the sensorsA-E to the
steroids1 and2, we then arrive at a ranking for the sensors with respect to
shape-length. As shown in the plots, sensorA has the greatest relative
response to1 and is thus closest to1 on the shape-length scale. In contrast,
sensorE has the least relative response to1 and is thus furthest from1 on
the scale. Analyte2 was equidistant from all sensors, while8, being reactive
mostly with E, is on the other extreme of shape length from1. The plots
show averages of six measurements with standard deviations, and the outputs
have been normalized to show percentage increase in fluorescence.
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applied the leave-one-out (LOO) or jackknife estimator to our
classifier, because LOO is an unbiased method and does not
require any additional data for an estimation of an error rate.
All error rates reported are estimated with the 95% confidence
level.

Using all seven sensors, we obtained an accuracy rate of
94.5%( 2.7%. We are interested in minimizing the number of
sensors needed in the array, so we examined the LOO accuracy
rate of the 127 arrays consisting of every possible subset of the
original seven sensors. Of the top 10 sensor combinations listed
in Table 1, the combination that omits sensorG has the best
overall performance. While the difference from the array
consisting of all seven sensors is not statistically significant (and,
as a matter of fact, the difference between the first 10 arrays is
not statistically significant at 95% confidence level), it is still
preferable to reduce the number of sensors. Therefore, the
recommendation is that the final array should consist of six
sensors, excludingG. Because of the unique ability ofE to
effectively eliminate the whole class of 1,E was the only sensors
selected in all top 10 subarrays.

While studying some of the other candidates for the optimal
sensor set, we made some interesting observations. For example,
the LOO accuracy rate for an array consisting of only five
sensorsA-E is about 93%. To determine which classes are
creating a problem for these sensors, we generated a confusion
matrix (Supporting Information). This protocol records the
classification choice the classifier has made for each of the
training points when it is treated as an unknown. With the initial
five sensors,A-E, 16 out of a total of 240 samples were
misclassified, with 6 of the errors involving confusion between
5, at low concentrations, and8. Our array with the best result
(96% accuracy) adds one redundant sensorF, reducing the
number of total errors to eight, and the number of errors between
5 and8 to only one. This observation could be rationalized by
studying individual dose-response curves for sensorsC andF
(Supporting Information); estradiol and cocaine are very close
in these two sensors, and they are only somewhat better
separated byF. Thus, introduction of redundancy had two
effects: (1) it effectively increased the number of measurements
in this area; and (2) it gave a slight improvement of resolution
at the lowest concentrations of estradiol; cumulatively, these
two changes seemed to have eliminated some confusion in our
array.

If we focused on only the three-way junction derived sensors,
we would also obtain correct classification in approximately
93% of cases, but with different sources of most common
classification errors: 6 out of 15 errors are coming from
misclassifying 6 as 2 and vice versa (with further errors

misclassifying2 and 3), and only one misclassification of5
and8 (the major source of misclassification with the initial five
sensors). This kind of misclassification, when compared to the
six-sensor array (or any subarray containingA-type sensors),
indicates that three-way junctions excel in the recognition of
hydrophobic core, while side chains are better distinguished by
sensors such asA. This is in agreement with the proposed
mechanism of action of both classes of sensors, in which
displacement of the fluorophore embedded in the three-way
junction leads to sensing, while even a straight chain can help
in inhibition of the assembly of nitroindole rings.

To provide an overall impression of the relation between the
classes (analytes) inN-dimensional space, some type of a 2D
representation is preferred, because it takes advantage of the
natural human ability for visual pattern recognition. Unfortu-
nately, we found that for our data the restriction to two
dimensions imposed too severe a constraint on standard
methods, such as multidimensional scaling,14 while shape and
distribution of the classes precluded using principal components
analysis15 (PCA) and multiple discriminate analysis13 (MDA).
However, it is possible to derive a projection, which separates
the classes well by directly optimizing for this quality. Given
that each class can be approximated by a curve connecting the
average responses for each concentration, we developed a new
projection pursuit16 algorithm, based on finding the projection
maximizing the separation in the plane of all seven curves. The
optimal projection, shown in Figure 4, gives a visual impression
of the relationships among the classes. This representation is a
2D projection from the 7D space consisting of all of the sensors
in the test set. This projection, while it gives us an impression
of separation in seven-dimensional space, is a separate and
unrelated analysis of the data from the classification accuracy.
Thus, this method does not provide an insight into the exact
areas of misclassification, for which one needs to look at the
confusion matrixes to understand (Supporting Information).

An interesting insight into the seven-dimensional space
obtained with these sensors can be gained by analyzing our

(14) Cox, T. F.; Cox, M. A. A.Multidimensional Scaling; 2001.
(15) Jolliffe, I. T. Principal Component Analysis; 1986.
(16) Huber, P. J.Ann. Stat.1985, 13, 435-475.

Table 1. Top Ten Sensor Combinations, and 95% Confidence
Intervals for Their True Error, As Estimated by the LOO Method

A B C D E F G accuracy

X X X X X X 96.1%( 2.3%
X X X X X 95.3% ( 2.5%
X X X X X X X 94.5%( 2.7%
X X X X X 94.5%( 2.7%
X X X X X 94.1% ( 2.8%
X X X X 93.7% ( 2.9%
X X X X X X 93.7%( 2.9%

X X X X X 93.3%( 3.0%
X X X X 92.8% ( 3.1%
X X X X X 92.8%( 3.1%

Figure 4. Projections from the seven-dimensional space onto a plane for
selected concentrations of each of the eight (including cocaine) compounds.
The values assigned to points are given as:x ) 0.190(E) + 0.312(B) +
-0.0504(C) + 0.128(A) + -0.0940(G) + -0.861(D) + 0.313(F), andy
) -0.122(E) + -0.263(B) + 0.919(C) + -0.00160(A) + 0.192(G) +
-0.185(D) + 0.00192(F).
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optimized projection in Figure 4. The algorithm used maximizes
the distance between individual curves (classes), and it clustered
together compounds with aromatic groups (5 and8, bottom right
of Figure 4), compounds with no, or one, hydroxyl group within
the steroid core (2, 3, and 6, upper left of Figure 4), and
compounds with two hydroxyl groups (1, 4, and7, upper right
of Figure 4). This kind of clustering can actually be intuitively
expected in the optimized projections, as related compounds
with similar overall sensor responses should be located closer
in the plot. For example, as mentioned above,5 and8 form a
group and they both have particularly strong interactions with
E, which would separate them from the rest of the analytes.
Also, the group consisting of2, 3, and6 has stronger interactions
with all negatively charged three-way junctions than do other
steroids.

Conclusions

Through screening pure steroids of various structures with
our collection of sensors, we can increase our understanding of
the “synthetic” or “bottom-up” approach to the construction of
cross-reactive arrays. We expect that the methodology used to
select sensors in this paper is useful as a general selection
procedure for small chemical sensor arrays. The method used
here applies screening to select a somewhat redundant set of
sensors, which is then expected to cover the entire space of
possible analytes. This initial set of sensors should be kept small
to limit the number of measurements required, but must contain
enough sensors to provide adequate discriminatory power. Once
this initial set is formulated, and its response to each of the
analytes is measured, an optimal subset can be found by deciding
on an appropriate classifier, and analyzing the error rates of
classifiers formed from every possible subset of sensors. Such
arrays would be particularly useful in differential diagnosis of
errors in steroidal metabolism that lead to gross increases in
concentration of a family of metabolites. The arrays can operate
over a range of analyte concentrations, which makes them very
useful in urinalysis, where differences in kidney filtrations can
complicate analysis, leading to variability in concentrations, and
necessitating standardization against creatinine.

The success of our cross-reactive array in classifying the more
general set of steroids demonstrates the usefulness of DNA
three-way junction-based receptors as scaffolds for the construc-
tion of sensors. This particular scaffold has been identified from
the corresponding sets of aptamers,6 and it is intriguing to
suggest that a similar approach, combining the power of
SELEX18 for the initial scaffold identification with a rational/
organic-synthetic combinatorial approach for diversification,
could be used to identify further scaffolds suitable for other
classes of compounds of medical interest, in particular, oli-
gosaccharides and lipids.

Materials and Methods
Materials. SensorsA, C, E, F, andG were custom-made and HPLC

purified by Integrated DNA Technologies, Inc. (Coralville, IA) and

were used as received. SensorB and the three-way junction with two
positive charges in the Supporting Information were custom-made and
PAGE purified by Trilink Biotechnologies (Carlsbad, CA). SensorD
was made in house, using phosphoramidites and other chemicals from
Glen Research (Sterling, Virginia) according to manufacturer procedures
on 8909 DNA RNA synthesizer (Applied Biosystems, Foster City, CA),
followed by PAGE purification. DNAse/RNAse free water was
purchased from ICN (Costa Mesa, CA) and used for all buffers, and
for stock solutions of oligonucleotides.A: 5′ GG(NI)(NI)GT(fT)TG-
(NI)(NI)GG; NI-nitroindole base.B: ATA TGA CmGA GGA TAA
ATC CT(fT) CCG CGA AGC GGmG TCA TAT; m, methyl phospho-
nate.C: GGGAGACAAGGATAAATCCTTCCGCGAAGAGGG(fT)
CGACA; fT, fluoresceinated dU base.D: GGGAGTCAGGATAAATC-
CTCAACGAAGTGG(spF) GACGACA; spF, spacer fluorescein.E:
GGGAG(fT)CAGGATAAATCCTCAACGAAGTGGGACGA CA.
F: ATATGACCGGATAAATCCGCCACGAAGTGGG(fT) CATAT.
G: GGGAG(fT)(intNH2)CAGTTTTTTTT; intNH2, spacer with amino
group.

Instruments. Fluorescent spectra were taken on a Perkin-Elmer (San
Jose, CA) LS-55 luminometer with a Hamamatsu Xenon lamp.
Experiments were performed at the excitation wavelength of 480 nm
and emission scan of 500-700 nm. Array work was done on a Perkin-
Elmer Victor II microplate reader, using filters of appropriate wave-
lengths. The gels were photographed using AlphaImager 3400 (Alpha
Innotech).

Measurements.In the initial screening of all sensors, 1 and 2 were
used (with various other steroids) at concentrations from 1 to 2000
µM and 1 to 1000µM, respectively, in a “selection buffer”, as reported
previously.6 For the purpose of final array characterization, samples of
each analyte were run in triplicates at each concentration and for each
sensor, on 2 days, for a total of six measurements for each concentration
and each sensor. SensorsB-F were run at 10 nM concentrations, while
A andG were run at 40 nM concentrations, all in “selection buffer”,
after preheating and cooling. In contrast toB-F, readings fromA and
G were time-sensitive. Thus, all readings were performed after the
signals for A and G stabilized, that is, after 3 h. Readings were
standardized, with the highest reading for any given sensor set on 100%,
and buffer average at 0%. In absolute values, the maximum increase
in fluorescence was for each sensor as follows:A 200%,B 80%, C
120%,D 120%,E 120%,F 100%,G 95%.
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